Kriging with nonparametric variance function estimation.

نویسندگان

  • J D Opsomer
  • D Ruppert
  • M P Wand
  • U Holst
  • O Hössjer
چکیده

A method for fitting regression models to data that exhibit spatial correlation and heteroskedasticity is proposed. It is well known that ignoring a nonconstant variance does not bias least-squares estimates of regression parameters; thus, data analysts are easily lead to the false belief that moderate heteroskedasticity can generally be ignored. Unfortunately, ignoring nonconstant variance when fitting variograms can seriously bias estimated correlation functions. By modeling heteroskedasticity and standardizing by estimated standard deviations, our approach eliminates this bias in the correlations. A combination of parametric and nonparametric regression techniques is used to iteratively estimate the various components of the model. The approach is demonstrated on a large data set of predicted nitrogen runoff from agricultural lands in the Midwest and Northern Plains regions of the U.S.A. For this data set, the model comprises three main components: (1) the mean function, which includes farming practice variables, local soil and climate characteristics, and the nitrogen application treatment, is assumed to be linear in the parameters and is fitted by generalized least squares; (2) the variance function, which contains a local and a spatial component whose shapes are left unspecified, is estimated by local linear regression; and (3) the spatial correlation function is estimated by fitting a parametric variogram model to the standardized residuals, with the standardization adjusting the variogram for the presence of heteroskedasticity. The fitting of these three components is iterated until convergence. The model provides an improved fit to the data compared with a previous model that ignored the heteroskedasticity and the spatial correlation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Estimation and Kriging Prediction for a Class of Non-stationary Spatial Models

This paper discusses the estimation and plug-in kriging prediction of a non-stationary spatial process assuming a smoothly varying variance function with an additive independent measurement error. A difference-based kernel smoothing estimator of the variance function and a modified likelihood estimator of the measurement error variance are used for parameter estimation. Asymptotic properties of...

متن کامل

Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland

Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. No...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

Analysis of Rainfall Data by Robust Spatial Statistics using S+SPATIALSTATS

This paper discusses the use of robust geostatistical methods on a data set of rainfall measurements for Switzerland. The variables are detrended via nonparametric estimation penalized with a smoothing parameter. The optimal trend is computed with a smoothing parameter based on cross-validation. The variogram is then estimated by a highly robust estimator of scale. The parametric variogram mode...

متن کامل

Nonparametric Spatial Rainfall Characterization Using Adaptive Kernel Estimator

A nonparametric statistical tool based on kernel function estimation is developed for spatial rainfall characterization. In this method, observations closer to the point of estimate are weighted higher using kernel function with a prescribed bandwidth. The kernel bandwidth is local and it extends only to the K Nearest Neighbor, KNN, observation. An optimal value for KNN is selected by cross val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 55 3  شماره 

صفحات  -

تاریخ انتشار 1999